Thermochimica Acta 381 (2002) 1-7 # thermochimica acta www.elsevier.com/locate/tca # Heat capacity of mixed oxides in the Bi₂O₃-CaO system P. Abrman^a, D. Sedmidubský^b, A. Strejc^b, P. Voňka^a, J. Leitner^{c,*} ^aDepartment of Physical Chemistry, Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic ^bDepartment of Inorganic Chemistry, Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic ^cDepartment of Solid State Engineering, Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic Received 7 May 2001; received in revised form 14 May 2001; accepted 14 May 2001 #### **Abstract** The low-temperature heat capacities of mixed oxides in the Bi–Ca–O system have been determined by the relaxation method at temperatures from 15 to about 225 K. The high-temperature heat capacities have been measured from 340 to about 1030 K using differential scanning calorimetry (DSC) in a stepwise mode. From the results, standard molar entropies and molar heat capacities at 298.15 K as well as their temperature dependencies were evaluated. © 2002 Elsevier Science B.V. All rights reserved. Keywords: Calcium bismuth oxide; Heat capacity; Entropy; DSC; Relaxation time calorimetry ### 1. Introduction The discovery of superconducting cuprates containing bismuth, calcium and strontium has led to an enhanced understanding of the synthesis and phase equilibria of compounds in the Bi–Sr–Ca–Cu–O system and the constituent binary and ternary subsystems. Conflant et al. [1] have identified four stable compounds of fixed composition (Bi₁₀Ca₇O₂₂, Bi₂CaO₄, Bi₆Ca₇O₁₆ and Bi₁₄Ca₅O₂₆) and three solid solutions (γ , δ , β_1/β_2) by high temperature XRD and DTA measurements. All four compounds melt incongruently. Roth et al. [2] and Burton et al. [3] have investigated and revised the phase diagram of Bi₂O₃–CaO by using high temperature XRD on quenched samples. The stoichiometry of the phases Bi₁₀Ca₇O₂₂ and Bi₆Ca₇O₁₆ was corrected to Bi₆Ca₄O₁₃ and Bi₂Ca₂O₅, respectively. Vstavskaya et al. [4] have reported only three stable stoichiometric compounds (Bi₆Ca₇O₁₆, Bi₂CaO₄ and Bi₁₀Ca₇O₂₂). In contrast to previous studies Bi₁₄Ca₅O₂₆ does not appear in their phase diagram. Tsang et al. [5] have studied the Bi₂O₃-CaO-CuO system and have found Bi₁₄Ca₅O₂₆, Bi₆Ca₄O₁₃ and Bi₂Ca₂O₅ to be stable at temperature of 1023 K while only Bi₂Ca₂O₅ was stable at 1173 K. Isothermal section of the phase diagram of the Bi-Ca-O system at 1000 K has been studied by Jacob and Jayadevan [6]. Four ternary oxides (Bi₁₄Ca₅O₂₆, Bi₂CaO₄, Bi₆Ca₄O₁₃ and Bi₂Ca₂O₅) have been identified. In a recently published paper [7], Gökcen et al. have examined phaseequilibria relations in the Bi₂O₃-CaO system over the temperature range of 923-1323 K in an oxygen atmosphere at a pressure of 1 bar. Three solid solutions and four different stoichiometric phases (Bi₂Ca₂O₅, Bi₂CaO₄, Bi₆Ca₄O₁₃ and Bi₁₄Ca₅O₂₆) have been found to be stable. E-mail address: jindrich.leitner@vscht.cz (J. Leitner). 0040-6031/02/\$ – see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: \$0040-6031(01)00659-1 ^{*} Corresponding author. Tel.: +420-2-2435-5156; fax: +420-2-2431-0337. Thermodynamic properties of mixed oxides Bi₁₄Ca₅O₂₆, Bi₂CaO₄, Bi₆Ca₄O₁₃ and Bi₂Ca₂O₅ have been assessed by Hallstedt et al. [8] in the frame of the thermodynamic evaluation of the Bi-Ca-O system. Based on the solution calorimetry measurements carried out by Idemoto et al. [9] and thermogravimetric data from Shimpo and Nakamura [10] as well as the phase-diagram data from [1-3], the values of enthalpy (ΔH_{ox}) and entropy (ΔS_{ox}) of formation of mixed oxides from Bi₂O₃ and CaO have been optimized. The approximated values ΔS_{ox} of 20 and $10 \,\mathrm{J \, K^{-1} \, mol^{-1}}$ are published for $\mathrm{Bi}_{14}\mathrm{Ca}_5\mathrm{O}_{26}$ and Bi₆Ca₄O₁₃, respectively, while zero for Bi₂CaO₄ and Bi₂Ca₂O₅ [8]. Jacob and Jayadevan [6] have measured the chemical potentials of Bi₂O₃ and CaO in phase fields involving the stoichiometric compounds by combined use of oxide and fluoride electrolytes. The temperature dependence of the standard Gibbs free energy of formation for all above-mentioned stoichiometric phases has been derived. The respective values of ΔS_{ox} resulting from these measurements: -12.76, -2.31, -7.04and $-5.79 \text{ J K}^{-1} \text{ mol}^{-1}$ for $\text{Bi}_{14}\text{Ca}_5\text{O}_{26}$, Bi_2CaO_4 , Bi₆Ca₄O₁₃ and Bi₂Ca₂O₅ are different from those assessed by Hallstedt et al. [8]. As a part of systematic studies on phase equilibria and thermodynamic properties of the quaternary system Bi–Sr–Ca–Cu–O [11–14], measurements of heat capacities of mixed oxides in the ternary system Bi–Ca–O have been carried out and are presented in this paper. ## 2. Experimental The Bi₂Ca₂O₅, Bi₂CaO₄, Bi₆Ca₄O₁₃ and Bi₁₄Ca₅O₂₆ oxides were prepared from of Bi₂O₃ (Aldrich, 99.99%) and CaCO₃ (Aldrich, purity >99.9%) in a tube furnace. Stoichiometric amounts of the constituent chemicals were weighed on an analytical balance with an accuracy 0.1 mg, mixed together in an agate mortar and pestled. The weighted specimens were calcined two times at various temperatures from 873 to 1093 K in air or oxygen atmosphere, with powdering and homogenizing before each heat treatment. The duration of each heat treatment was generally between 20 and 60 h (see Table 1). For the final step of each preparation the specimens were pressed into pellets. The composition of prepared samples was checked by powder-XRD analysis. The diffraction patterns showed the samples consisted of single phase without any observable diffraction lines from other phases. The atomic absorption spectroscopy was used in order to find the actual ratio of Bi and Ca in prepared samples. The values of 2.84, 1.97, 1.44 and 0.98 for Bi₁₄Ca₅O₂₆, Bi₂CaO₄, Bi₆Ca₄O₁₃ and Bi₂Ca₂O₅ show slight deviations from ideal stoichiometry (2.8, 2.0, 1.5 and 1.0). The low-temperature heat capacity was measured in the range between 15 and 215 K by the relaxation method. A plate-shaped sample was attached to platinum resistance heater, which was connected by two tungsten wires to a heat sink equilibrated at desired temperature. When the sample is heated, a temperature difference ΔT occurs between the sample and the heat sink, which is stabilized at certain temperature value. The following thermal stabilization rate gives the characteristic value of relaxation time τ . Then the heat capacity of the sample can be expressed as $C = P\tau/\Delta T$, where P is the heating power. The obtained value must have been further corrected to an addenda dependent of the particular sample holder. Table 1 Samples preparation | Oxide | First calcination | | | Second calcination | | | Final step | | | |---|-------------------|--------------|------------|--------------------|--------------|------------|------------|--------------|------------| | | T(K) | Duration (h) | Atmosphere | T(K) | Duration (h) | Atmosphere | T(K) | Duration (h) | Atmosphere | | Bi ₂ CaO ₄ | 973 | 53 | Air | 1023 | 90 | Air | 1043 | 20 | Air | | Bi ₂ Ca ₂ O ₅ | 1023 | 48 | Air | 1053 | 30 | Air | 1093 | 48 | Air | | Bi ₆ Ca ₄ O ₁₃ | 973 | 48 | Air | 1033 | 24 | Air | 1093 | 50 | Air | | $Bi_{14}Ca_5O_{26}$ | 873 | 48 | Air | 93 | 24 | Oxygen | 983 | 60 | Oxygen | The high-temperature heat capacities have been measured from 340 to about 1030 K on the multi-detector high temperature calorimeter SETARAM equipped with the heat flux DSC detector. The DSC method with reference in a stepwise mode with heating rate 1 K min⁻¹, temperature step 20 K and isothermal delay 5500 s was employed. The calibration of the apparatus was performed by measuring the heat capacity of a synthetic sapphire, NIST standard reference material no. 720. The samples were preheated before each measurement. All measurements were carried out in air closed atmosphere. #### 3. Results and discussion The obtained temperature dependencies of C_{pm} are shown in Figs. 1–4. The high- and low-temperature data series of each stoichiometric compound (except the phase $\mathrm{Bi}_{14}\mathrm{Ca}_5\mathrm{O}_{26}$) join smoothly and show no transitions in the measured temperature range. As the two subsequent runs have been performed with the same sample the observed discrepancies should be ascribed to lower reproducibility of the DSC measurements above 400 K. Since for $\mathrm{Bi}_{14}\mathrm{Ca}_5\mathrm{O}_{26}$ phase the required reproducibility of low-temperature measurements was not achieved only the high-temperature values of heat capacity are presented in this case. The low- and high-temperature heat capacities were correlated simultaneously by the least square method applying boundary conditions. The entire temperature interval of measured data was divided into four sub-intervals. The experimental data in the range of $0-T_1$ were fitted to the function (1), while those between the temperature T_1 and T_2 are approximated by the Eq. (2), etc. $$C_{pm,1} = A_1 + B_1 T^3, \quad T \in \langle 0, T_1 \rangle$$ (1) $C_{pm,2} = A_2 + B_2 T + C_2 T^2 + D_2 T^{-2}, \quad T \in \langle T_1, T_2 \rangle$ (2) $$C_{pm,3} = A_3 + B_3 T + C_3 T^2 + D_3 T^{-2}, \quad T \in \langle T_2, T_3 \rangle$$ (3) $$C_{pm,4} = A_4 + B_4 T + C_4 T^{-2}, \quad T \in \langle T_3, T_4 \rangle$$ (4) At boundary temperatures T_1 , T_2 and T_3 the equality of corresponding function values and the equality of corresponding first partial derivatives with respect to temperature are required. These requirements are included into subsequent boundary conditions (5) and (6): $$C_{pm,i}(T_i) = C_{pm,j}(T_i), \quad i = 1, 2, 3; \quad j = 2, 3, 4$$ (5) $$\left(\frac{\partial C_{pm,i}}{\partial T}\right)_{T=T_i} = \left(\frac{\partial C_{pm,j}}{\partial T}\right)_{T=T_i},$$ $$i = 1, 2, 3; \quad j = 2, 3, 4$$ (6) Fig. 1. Molar heat capacity of Bi₂Ca₂O₅ as a function of temperature. Fig. 2. Molar heat capacity of Bi₂CaO₄ as a function of temperature. In order to acquire a set of unknown statistical parameters it is necessary to find a minimum of function F: $$F(A_{1}, B_{1}, \dots, C_{4}, \lambda_{1}, \dots, \lambda_{6})$$ $$= \sum_{i=1}^{N_{1}} [C_{pm,i} - A_{1}T_{i} - B_{1}T_{i}^{3}]^{2}$$ $$+ \sum_{j=1}^{N_{2}} \left[C_{pm,j} - A_{2} - B_{2}T_{j} - C_{2}T_{j}^{2} - \frac{D_{2}}{T_{j}^{2}} \right]^{2}$$ $$+ \sum_{k=1}^{N_{3}} \left[C_{pm,k} - A_{3} - B_{3}T_{k} - C_{3}T_{k}^{2} - \frac{D_{3}}{T_{k}^{2}} \right]^{2}$$ $$+ \sum_{l=1}^{N_{4}} \left[C_{pm,l} - A_{4} - B_{4}T_{l} - \frac{C_{4}}{T_{l}^{2}} \right]^{2}$$ $$+ \lambda_{1} [C_{pm,1}(T_{1}) - C_{pm,2}(T_{1})]$$ $$+ \lambda_{2} \left[\left(\frac{\partial C_{pm,1}}{\partial T} \right)_{T=T_{1}} - \left(\frac{\partial C_{pm,2}}{\partial T} \right)_{T=T_{1}} \right]$$ $$+ \lambda_{3} [C_{pm,2}(T_{2}) - C_{pm,3}(T_{2})]$$ $$+ \lambda_{4} \left[\left(\frac{\partial C_{pm,2}}{\partial T} \right)_{T=T_{2}} - \left(\frac{\partial C_{pm,3}}{\partial T} \right)_{T=T_{2}} \right]$$ $$+ \lambda_{5} [C_{pm,3}(T_{3}) - C_{pm,4}(T_{3})]$$ $$+ \lambda_{6} \left[\left(\frac{\partial C_{pm,3}}{\partial T} \right)_{T=T_{3}} - \left(\frac{\partial C_{pm,4}}{\partial T} \right)_{T=T_{3}} \right]$$ $$(7)$$ Differentiation of the function F with respect to its variables gives the system of normal equations. By solving it the required set of parameters is obtained. Statistical processing of measured data is accompanied by evaluation of covariance matrix and prediction bands. These values are presented in Table 2. The optimized low- and high-temperature experimental data have been compared with those estimated by the Neumann-Kopp's additive rule. The significant deviations between the fitted curves and the Neumann-Kopp approximations in the temperature range of 80-200 K might be indicative of the coexistence of heavy (and highly polarizable) Bi-atoms and relatively light Ca and O atoms within one structure, giving strongly different Debye temperatures for the respective lattice vibration modes. The differences at 298.15 K are reaching the values 0.24, 2.12 and 0.40% for Bi₂Ca₂O₅, Bi₂CaO₄ and Bi₆Ca₄O₁₃, respectively. The described statistical procedure was used for Bi₂Ca₂O₅, Bi₂CaO₄ and Bi₆Ca₄O₁₃. The experimental data of Bi14Ca5O26 were fitted to the function (4) applying C_{pm} (298.15) as a boundary condition. This value was assessed by the Neumann-Kopp's additive rule since a good agreement between the measured and estimated values was found in case of the other phases. The standard molar entropy at 298.15 K is calculated by the stepwise integration as expressed in Fig. 3. Molar heat capacity of Bi₆Ca₄O₁₃ as a function of temperature. $$S_{\rm m}(298.15) = \int_0^{T_1} \frac{C_{pm,1}}{T} dT + \int_{T_1}^{T_2} \frac{C_{pm,2}}{T} dT + \int_{T_2}^{298.15} \frac{C_{pm,3}}{T} dT$$ $$(8)$$ This value is used for the determination of the temperature dependence (9): $$S_{\rm m}(T) = S_{\rm m}(298.15) + \int_{298.15}^{T} \frac{C_{pm,4}}{T} dT$$ (9) The standard molar entropies of formation of Bi_2CaO_4 , $Bi_2Ca_2O_5$ and $Bi_6Ca_4O_{13}$ from the constituent binary oxides are calculated from the molar Fig. 4. Molar heat capacity of $Bi_{14}Ca_5O_{26}$ as a function of temperature. Table 2 Evaluated parameters for the polynomial representation of the molar heat capacities | Oxide | $Bi_2Ca_2O_5$ | | Bi ₂ CaO ₄ | | $\mathrm{Bi_6Ca_4O_{13}}$ | | $\mathrm{Bi}_{14}\mathrm{Ca}_5\mathrm{O}_{26}$ | | |---|-----------------|-------------|----------------------------------|------------|---------------------------|-------------|--|------------| | | Parameter | Error | Parameter | Error | Parameter | Error | Parameter | Error | | $\overline{C_{pm,1} = A_1 T + B_1 T^3}$ | | | | | | | | | | Temperature range (K) | 0-40 | 0-40 | 0-40 | 0-40 | 0-40 | 0-40 | _ | _ | | A_1 | 0.5128 | 0.179 | 0.5688 | 0.201 | 1.3319 | 0.574 | _ | _ | | $B_1 \times 10^3$ | 0.1985 | 0.102 | 0.1635 | 0.121 | 0.3997 | 0.337 | _ | = | | $C_{pm,2} = A_2 + B_2 T + C_2 T$ | $T^2 + D_2/T^2$ | | | | | | | | | Temperature range (K) | | 40-120 | 40-110 | 40-110 | 40-110 | 40-110 | _ | _ | | A_2 | 7.9552 | 37.084 | 72.194 | 60.59 | -64.872 | 142.8 | _ | _ | | B_2 | 1.0059 | 0.684 | -0.3979 | 1.20 | 4.2301 | 2.731 | _ | _ | | $C_2 \times 10^3$ | -1.8068 | 3.232 | 3.7418 | 6.056 | -14.084 | 13.46 | _ | _ | | $D_2 \times 10^{-3}$ | -19.338 | 22.90 | -46.474 | 33.88 | 4.703 | 8.39 | - | - | | $C_{pm,3} = A_3 + B_3 T + C_3 T$ | $T^2 + D_3/T^2$ | | | | | | | | | Temperature range (K) | 120-298.15 | 120-298.15 | 110-298.15 | 110-298.15 | 110-298.15 | 110-298.15 | _ | _ | | A_3 | -65.770 | 72.88 | -72.762 | 68.79 | -312.901 | 134.85 | _ | _ | | B_3 | 1.4232 | 0.499 | 1.3081 | 0.488 | 4.6156 | 0.933 | _ | _ | | $C_3 \times 10^3$ | -1.8545 | 0.867 | -1.8997 | 0.864 | -6.4634 | 1.629 | _ | _ | | $D_3 \times 10^{-3}$ | 331.245 | 357.29 | 262.860 | 315.14 | 1367.59 | 633.49 | - | = | | $C_{\text{pm.4}} = A_4 + B_4 T + C_4 /$ | T^2 | | | | | | | | | Temperature range (K) | 298.15-1060 | 298.15-1060 | 298.15-990 | 298.15-990 | 298.15-1120 | 298.15-1120 | 298.15-985 | 298.15-985 | | A_4 | 226.096 | 9.06 | 157.161 | 11.42 | 550.808 | 21.56 | 1115.90 | 57.84 | | $B_4 \times 10^2$ | 3.3374 | 1.01 | 3.8750 | 1.33 | 11.489 | 2.42 | 32.391 | 6.91 | | $C_4 \times 10^{-7}$ | -0.34323 | 0.073 | -0.15461 | 0.087 | -0.72005 | 0.155 | -1.92895 | 0.3355 | Table 3 Molar heat capacity, molar entropy and entropy of formation from binary oxides | Oxide | Bi ₂ Ca ₂ O ₅ | Bi ₂ CaO ₄ | Bi ₆ Ca ₄ O ₁₃ | |---|--|----------------------------------|---| | $C_{\rm pm}$ (298.15) (J K ⁻¹ mol ⁻¹) | 197.44 ± 1.90 | 151.32 ± 2.02 | 504.06 ± 3.71 | | $S_{\rm m}$ (298.15) (J K ⁻¹ mol ⁻¹) | 231.28 ± 2.91 | 188.46 ± 3.29 | 574.13 ± 8.77 | | $\Delta S_{\rm ox}$ (298.15) (J K ⁻¹ mol ⁻¹) | 6.59 | 1.87 | -23.74 | | $\Delta S_{\rm ox}$ (1000) (J K ⁻¹ mol ⁻¹) | 15.56 | 0.70 | -5.19 | | $\Delta S_{\rm ox} ({\rm J K}^{-1} {\rm mol}^{-1}) [8]$ | 0.00 | 0.00 | 10.00 | | $\Delta S_{\rm ox} ({\rm J K^{-1} mol^{-1}}) [6]$ | -5.79 | -2.31 | -7.04 | entropies and the heat capacities obtained in this study and those of $\rm Bi_2O_3$ and CaO reported in [15,16]. The results are compared in Table 3 with both the values optimized by Hallstedt et al. [8] and those derived from the linear temperature dependencies of standard Gibbs energies ($\Delta G_{\rm ox}$) of formation, which were evaluated from the solid-state EMF measurements in the temperature range of 850–1100 K [6]. The standard molar entropy of formation of Bi₂CaO₄ at 298.15 K from this study corresponds very well to the value optimized by Hallstedt et al. [8]. At 1000 K the value is small positive while that reported by Jacob and Jayadevan [6] is small negative. $\Delta S_{\rm ox}$ of Bi₆Ca₄O₁₃ at 298.15 K obtained in this study is not compatible with the value of Hallstedt et al. [8], while at 1000 K it is in a close agreement with the result of Jacob and Jayadevan [6]. In the case of Bi₂Ca₂O₅ we obtain, as distinct from [6], a positive value of $\Delta S_{\rm ox}$ which increases with increasing temperature. # Acknowledgements This work was supported by the Grant Agency of the Czech Republic (Grant no. 106/00/0568) and the Ministry of Education of the Czech Republic (Grant no. VS 96070). #### References - P. Conflant, J.-C. Bovin, D. Thomas, J. Solid State Chem. 18 (1976) 133. - [2] R.S. Roth, N.M. Hwang, C.J. Rawn, B.P. Burton, J.J. Ritter, J. Am. Ceram. Soc. 74 (1991) 2148. - [3] B.P. Burton, C.J. Rawn, R.S. Roth, N.M. Hwang, J. Res. Natl. Inst. Stand. Technol. 98 (1993) 469. - [4] E.Yu. Vstavskaya, A.Yu. Zuev, V.A. Cherepanov, Mater. Res. Bull. 29 (1994) 1233. - [5] C.-F. Tsang, J.K. Meen, D. Elthon, J. Am. Ceram. Soc. 80 (1997) 1501. - [6] K.T. Jacob, K.P. Jayadevan, Mater. Trans. JIM 38 (1997) 427. - [7] O.A. Gökcen, J.V. Styve, J.K. Meen, D. Elthon, J. Am. Ceram. Soc. 82 (1999) 1908. - [8] B. Hallstedt, D. Risold, L.J. Gauckler, J. Am. Ceram. Soc. 80 (1997) 2629. - [9] Y. Idemoto, K. Shizaku, Y. Yasuda, K. Fueki, Physica C 211 (1993) 36. - [10] R. Shimpo, Y. Nakamura, Metall. Mater. Trans. B 25B (1994) 97 - [11] M. Nevřiva, D. Sedmidubský, H. Kraus, Thermochim. Acta 282 (1995) 205. - [12] D. Sedmidubský, M. Nevřiva, J. Leitner, Physica C 282–287 (1997) 439. - [13] M. Mrověc, J. Leitner, M. Nevřiva, D. Sedmidubský, J. Stejskal, Thermochim. Acta 318 (1998) 63. - [14] J. Leitner, D. Sedmidubský, B. Doušová, A. Strejc, M. Nevřiva, Thermochim. Acta 348 (2000) 49. - [15] D. Risold, B. Hallstedt, L.J. Gauckler, J. Phase Equil. 16 (1995) 223. - [16] J.R. Taylor, A.T. Dinsdale, CALPHAD 14 (1990) 71.